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Abstract

The attention that deep learning has garnered from the academic community and

industry continues to grow year over year, and it has been said that we are in a

new golden age of artificial intelligence research. However, neural networks are still

often seen as a “black box” where learning occurs but cannot be understood in a

human-interpretable way. Since these machine learning systems are increasingly being

adopted in security contexts, it is important to explore these interpretations. We

consider an Android malware traffic dataset for approaching this problem. Then, using

the information plane, we explore how homeomorphism affects learned representation

of the data and the invariance of the mutual information captured by the parameters

on that data. We empirically validate these results, using accuracy as a second measure

of similarity of learned representations.

Our results suggest that although the details of learned representations and the

specific coordinate system defined over the manifold of all parameters differ slightly,

the functional approximations are the same. Furthermore, our results show that since

mutual information remains invariant under homeomorphism, only feature engineering

methods that alter the entropy of the dataset will change the outcome of the neural

network. This means that for some datasets and tasks, neural networks require

meaningful, human-driven feature engineering or changes in architecture to provide

enough information for the neural network to generate a sufficient statistic. Applying

our results can serve to guide analysis methods for machine learning engineers and

suggests that neural networks that can exploit the convolution theorem are equally
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accurate as standard convolutional neural networks, and can be more computationally

efficient.
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Chapter 1

Introduction

Malicious software (malware), has long been a burden on users of computers and the

internet. For individuals, a malware attack can cause the loss of their personal data

and may allow hackers to access their bank accounts, steal their identity, or hold all of

the files on their computer ransom. For a business, the effects can be extremely dire,

with the average cost of a malware attack sitting around $1.7 million [2]. This problem

is continuing to grow, and malware authors innovate in an effort to circumvent existing

mitigating controls. As the IRA said to Margaret Thatcher after the Brighton Hotel

Bombing: “We only have to be lucky once. You will have to be lucky always” [3]. So too

is the case for malware, which must only find one vulnerable system to cause immense

damage, while defenders must be lucky on all of their systems. As such, traditional

signature-based antivirus engines have become less effective against unseen strains

of malware [4], and so machine learning techniques have helped provide detection of

these threats on the endpoint.

In the case of mobile malware, we often do not have the luxury of running

computationally intensive processes on an endpoint, nor do we have the ability to

remove malware from devices that we do not own that are brought onto our networks.

As such, we need to leverage this same machine learning technology to perform

endpoint-agnostic network detection of malware threats. In these cases, a network-

based solution seems ideal, as this allows us to mitigate vectors commonly used by
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modern worms [5]. Traditional intrusion detection systems like Snort will continue to

mitigate known threats, but these signature-based systems suffer from the same curse

of reactivity as the traditional antivirus. In order to mitigate these threats, mitigating

controls must be learned on the fly instead of reactively post-hoc by a human analyst.

Machine learning is a form of statistical learning that emphasizes predictions and

pattern recognition in data [6]. Generally, machine learning is viewed as a subset of

artificial intelligence where algorithms build mathematical models based on sample

data in order to make predictions without being programmed to do so [7]. Machine

learning is broadly divided into 3 categories: Supervised learning, where a function

to map data to a set of associated labels is learned; Unsupervised learning, where

groupings or clusters of the data are identified without labels; and Reinforcement

learning, which is concerned with experiential learning through agent interactions

with an environment. Though there are more granular categories, these suffice for

most purposes. In our case, we are concerned with a classification task for data where

we do have labels - so we concern ourselves with supervised learning throughout this

work.

1.1 Neural Networks

Neural Networks are a type of connectionist machine learning system in which artificial

neurons are connected to one another in an attempt to emulate biological cognitive

functions. Each neuron is a node that connects to others in a way that mimics the

dendrite-synapse-axon connections, illustrated in Figure 1-1. Each of these connections,

similar to the myelin sheath in the brain, has a weight that determines the strength

of any node on another.

Deep learning [8] is a particular form of machine learning in which artificial neurons

are stacked on top of one another in two or more layers. Having a larger number of

2



Figure 1-1. Neuron and mylinated axon with signal flow by Egm4313.s12 (Prof. Loc
Vu-Quoc) - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.
php?curid=72816083

layers allows the network to learn increasingly complex representations at the cost of

training speed and the need for more data. This has reasonably led us to ask what the

applicability of neural networks and deep learning are to domains other than natural

language processing [9] and computer vision [10].

Neural networks are not new and are quite closely related to the work of Gauss and

Legendre [11] on polynomial regression. This linear approximator takes the weights

of the neuron wi and multiplies them by the input xi and compares them with a

threshold (or bias, as we will refer to it), b. So for our linear approximator, L, we

have: L(x) = ∑n
i=1 wixi − b. In order to determine whether or not this neuron “fires”,

we use a nonlinear activation function such as the Heaviside function, the sigmoid

function, or the rectified linear unit (ReLU), which we denote σ. First, define the

Heaviside function, which we denote δ(x) 1:

δ(x) =

⎧⎨⎩0 if x < 0
1 if x ≥ 0

(1.1)

We define the Rectified Linear Unit (ReLU) by σ : R → R:

σ(z) = zδ(z) = max{0, z} (1.2)
1The Heaviside function is typically denoted H(x) but we reserve that notation for entropy, which

we define in Chapter 2
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and so the output of our neuron is given by:

ŷ = σ

(
n∑

i=0
wixi

)
(1.3)

where w0 = b and x0 = −1 to account for the bias term.

The weights are initialized randomly when the network is instantiated and are

updated during the training process. In order to update the weights, a loss function

must be specified. This loss function will take the output of the neural network ŷ and

compare this prediction with the true value y to assess the error. Loss functions are too

numerous to go through in detail here, so we refer interested readers to Goodfellow [8]

for details. For our purposes, we are interested in a classification task, and so we use

the cross-entropy loss, defined as:

J = −
M∑

c=1
yo,c ln(ŷo,c) (1.4)

Where

yo,c =

⎧⎨⎩1 if class label c is correct for observation o

0 otherwise
and ŷo,c is the predicted probability that observation o belongs to class c. Since our

number of classes, M equals 2, the cross-entropy loss simplifies to:

J = −[y ln(ŷ) + (1 − y) ln(1 − ŷ)] (1.5)

In order to update our weights, we must take the gradient of the loss function, ∇J ,

and then update the weights of each layer by backpropogation:

wt = wt−1 − α ∗ ∇Jt−1 (1.6)

where α is the learning rate. There are many optimization algorithms which can be

used by neural networks, and this is an active area of research. Throughout our text,

we use stochastic gradient descent [12] without momentum.

Much of the power of neural networks as compared to standard polynomial re-

gression stems from their incredible ability to generalize to previously unseen data.
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Cybenko [13] first proved that 2-layer neural networks using sigmoid activation func-

tions can uniformly approximate any continuous function of n real variables with

support in the unit hypercube. This result has been extended several times to other

activation functions and networks of bounded width and depth. Due to Lu et al. [14],

we can state the following:

Theorem 1.1.1. Let f : Rn → R be a Lebesgue-measurable function satisfying
∫
Rn

⏐⏐f(x)
⏐⏐ dx < ∞

then for any Lebesgue-integrable function f and ϵ ∈ R; ϵ > 0, there exists a fully-

connected ReLU network A of width dm ≤ 4 + n such that the function FA represented

by the neural network satisfies:
∫
Rn

⏐⏐f(x) − FA(x)
⏐⏐ dx < ϵ

Despite the strength of these results, representation learning and neural network

interpretability are open questions. At present, little is understood about the exact

mechanism by which neural networks are able to learn, and what the meaning of

the learned representation is. Some theories exist and since many of them are not

mutually exclusive, it stands to reason that several may be true. In particular, we will

consider the information bottleneck theory [15, 16] from a geometric point of view.

1.2 Prior Work

Our work leverages an expanded dataset from Watkins et al. [17] and one of our

objectives, as in Watkins’ work, is to build a model that sufficiently detects Android

malware using the interarrival time of Internet Control Message Protocol (ICMP) ping

packets. In the literature, decision trees were used to classify traffic. Other work on

the dataset by Watkins’ team more closely mirrors our own, and details are elaborated

in Chapter 3. In order to compare to Watkins’ results to our own neural network
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results, we leverage a random forest from the Scikit-learn [18] Python package to

serve as a baseline. Our work differs in that rather than just seeking to optimize

our capability to detect malware, we use Watkins’ dataset to evaluate the efficacy of

different neural network architectures.

The use of Fourier transforms in neural networks has been of interest for some time,

and there are several papers on the subject [19–21] which consider these applications.

The choice to explore Fourier transforms in convolutional neural networks is natural,

as the dot product is much faster than a convolution operation that relies on a

sliding kernel. We lean most heavily on the paper by Pratt et al. [20] due to its

recency and implementation details. Particularly, Pratt considers the impact of the

convolution theorem within neural networks and uses the Fast Fourier Transform to

quickly compute F(κ ∗ u) = F(κ) ⊙ F(u), where F is the Fast Fourier Transform, ∗

denotes convolution, and ⊙ denotes the Hadamard pointwise Product. Ultimately, the

paper shows that on the CIFAR-10 and MNIST datasets, the overall accuracy is lower

than benchmark results - though the network trains and evaluates images much more

quickly. Interestingly, we found the opposite results, which we detail in Chapter 3.

Wavelet neural networks pioneered by Fujieda et al. [22] have shown promise for

generalized convolution by abstracting them into downsampling and filtering in the

spectral domain. The results in the Fujieda paper were significant, as the network

achieved better accuracy results than AlexNet on the target dataset while having

approximately 1/4 the number of parameters. In addition, the memory requirements

and speed of the network were a significant improvement on the other architectures

considered by Fujieda. It is worth noting that implementation details from Fujieda

are sparse, and so our implementation may differ from this reference implementation

in some way, though the spirit and overall methods are the same.

Our work also considers and builds upon the Information Bottleneck theory of

Neural Networks introduced by Tishby [15]. The information bottleneck theory of
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deep learning suggests that the goal of supervised learning is to capture and efficiently

represent the relevant information about the input data about the target data. In the

process of creating a minimal sufficient statistic, a maximally compressed mapping

of the input which minimizes mutual information is generated. Tishby does this

by demonstrating that the layered structure of the network creates a Markov chain

of intermediate representations that forms the sufficient statistics. The paper also

suggests learning via information bottleneck, a technique we do not leverage.

Many of the issues with the information bottleneck theory are addressed in a

controversial paper by Saxe [1]. Saxe argues compellingly that many of the issues

with the saturation of nonlinearities such as tanh are not observed with ReLU.

Additionally, it argues - using empirical results - that networks which do not compress

can still generalize. Saxe does not, however, argue that the fundamental conceit of the

information bottleneck theory still holds and that an information theoretic approach

to neural networks is still critical.

Fischer [16] improves on Tishby’s work by addressing Saxe’s concerns and exper-

imenting with both deterministic models as well as Variational Information Bottle-

neck [23] models. Fischer suggests that problems with robust generalization and lack of

compression stem from models retaining too much information about the training data.

The Conditional Entropy Bottleneck model proposed by Fischer directly optimizes

what he calls the Minimum Necessary Information criteria. Our work leans on the

minimum necessary information criterion as a point of theory, and we detail it in

Chapter 2.

1.3 Content of this Thesis

Neural networks largely remain a closed box and in practice, a lot of effort needs to be

invested into feature engineering to achieve desired outcomes. This is not necessarily
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true in the computer vision space where representations are learned from pixels, but

is demonstrably true in domains such as information security, where terminology is

not universally agreed upon and measurement can be difficult. Additionally, feature

engineering is crucial in systems where the relationship between measurements and

events is not deterministic and easily confounded.

Wavelet transforms and the Fourier transform were considered for use as powerful

tools from signal processing that have wide-ranging uses and implications well beyond

our goal of malware classification. Our initial expectation was that these tools would

serve to enhance the ability of networks to learn by extracting features from the raw

data, processing it into a form which would give the neural network a more robust

feature set to learn from. During the experiments, the transformations seemed not to

alter the ability of the network to learn, and we looked to information theory for an

explanation. In our consideration of the network as a manifold and the weights of

the network as projections of our data as a coordinate system on that manifold which

is optimized through gradient descent, information theory provided a framework on

which to build understanding of our results. This work is presented in the following

order, which front-loads this theory as a lens through which we can see our results.

• In Chapter 2, we cover the necessary information theory to contextualize the

results of this thesis. We cover common terminology, all of which is covered

in greater depth in the canonical introduction to information theory by Cover

and Thomas [24]. We move on to prove an important result about preservation

of mutual information under homeomorphism. We introduce the information

bottleneck and the concept of minimum necessary information, which further

contextualizes our results. We then discuss a geometric view of neural networks

and how the optimal weights of the neural network can be viewed as the

orthonormal projection of the target onto the manifold of the neural network.
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• In Chapter 3, we address our malware problem and dataset. We explain the

four neural network architectures, and two baseline models we use in our ex-

periments. We conduct transforms on our data and treat the raw, Fourier, and

Wavelet-transformed data as well as a dataset of summary statistics in line with

Watkins [17]. We also run our malware dataset through Fourier and Wavelet

neural networks inspired by prior work [20, 22] where the convolution theorem

is exploited to learn representations. We consider the mutual information as

before and address the accuracy results of the networks in question on our raw

and summary datasets. We also capture the information plane representation of

mutual information in the network similar to prior research [1, 25].

• In Chapter 4, we treat the MNIST dataset as our baseline for performance.

This experiment was conducted to confirm our findings from our experiments

on the malware dataset. We choose MNIST as our baseline dataset; due to the

vast amount of literature on MNIST, it has been referred to as the "Drosophila

of machine learning" [8], making it suitable to contextualize our results. Our

experimentation in this chapter is functionally the same as in Chapter 3, with

minor modifications to the methodology where they would not apply to an

image-based dataset, such as the elimination of the summary statistic dataset

and the baseline detection models.

• Finally, Chapter 5 brings together the outcomes of our networks, baseline models,

and information theoretic considerations of learning to explain our results. We

consider avenues for further research and potential implications of our findings.

9



Chapter 2

Information Theory Preliminaries

2.1 A Whirlwind Tour of Information Theory

Since our work makes use of information theory, it is helpful to cover the core

terminology. For the following proofs, all random variables are assumed to be discrete.

This is both because binary computers have only finite precision, which means they

are not “truly” continuous, and discrete information theory is a more mature science

in that many foundational results are proven only in the discrete case.

First, we define entropy as the measure of uncertainty of a single random variable.

Let X be a random variable with alphabet X and probability mass function p(x) =

Pr{X = x}, x ∈ X . Then the entropy of X, represented H(X) is defined as

H(X) = −
∑
x∈X

p(x) log p(x) (2.1)

Here our logarithm is to the base 2, as information is most commonly represented as

bits. We maintain this definition of the logarithm throughout.

In the case where we are examining two random variables, for example, a dataset

and its labels, we may want to consider the joint and conditional entropy of those

random variables. The joint density of a pair of discrete random variables (X, Y ) with

joint distribution p(X, Y ) is:

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (2.2)

10



and the differential entropy H(Y |X) as:

H(Y |X) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x) (2.3)

Therefore, we define mutual information, I(X;Y ) as the relative entropy between

the joint distribution and the product distribution:

I(X;Y ) =
∑
x,y

p(x, y) log p(x, y)
p(x)p(y) = H(Y ) −H(Y |X) (2.4)

Mutual information is an important quantity for us, since it is a measure of dependence

between two random variables. Specifically, it provides a measure of information

obtained about one random variable by the observation of another random variable.

Therefore, if we can observe X and want to predict Y , we would like for the mutual

information between X and Y to be high.

We define the Kullback-Leibler divergence D(p||q) between two probability mass

functions p(x) and q(x) to be:

D(p||q) =
∑
x∈X

p(x) log p(x)
q(x) (2.5)

Lastly, we introduce the data processing inequality. Assume that three random

variables X, Y, and Z form a Markov chain denoted X → Y → Z. Let Z depend

only on Y and let Z be conditionally independent of X. Then the data processing

inequality shows that no local manipulation of the data can improve inferences drawn

from that data. By the chain rule, we can expand mutual information as follows:

I(X;Y, Z) = I(X;Z) + I(X;Y |Z) (2.6)

= I(X;Y ) + I(X;Z|Y ) (2.7)

Since X and Z are conditionally independent given Y , we have I(X;Z|Y ) = 0. Since

I(X;Y |Z) ≥ 0, we have:

I(X;Y ) ≥ I(X;Z) (2.8)

which is known as the data processing inequality.

Detailed derivation of all above results are available in [24].
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2.2 Invariance of Mutual Information

We begin by proving the invariance of mutual information under homeomorphism,

based on a similar proof [26].

Theorem 2.2.1 (Invariance of Mutual Information under Homeomorphism). Take

two random variables X and Y where Y is the set of labels of X. Let X ′ = ψ(X),

where ψ is a smooth and uniquely invertible map (a homeomorphism). Then since

X is a random variable, X ′ is a random variable as long as ψ is well-defined for the

range of X. Thus, I(X ′;Y ) = I(X;Y ).

Proof. Given the Jacobi determinant JX = ||∂X/∂X ′|| = ||∂X/∂ψ(X)||, we observe

that the joint distribution of X ′ and Y is given by: fX′,Y (x′, y) = JX(x′)f(x, y)

I(X ′;Y ) =
∫ ∫

dx′dyf(x′, y) log f(x′, y)
fx′(x′)fy(y′) (2.9)

=
∫ ∫

dxdyf(x, y) log f(x, y)
fx(x)fy(y) (2.10)

= I(X;Y ) (2.11)

2.3 Minimum Necessary Information and Informa-
tion Bottleneck

Naftali Tishby and Noga Zaslavsky introduced the information bottleneck theory of

neural networks [15] as a way of explaining the theoretical generalization bounds of

neural networks. In particular, Tishby and Zaslavsky show that any deep neural

network can be quantified by the mutual information between the input, hidden layers,

and the output variable by way of information per the data processing inequality,

Equation 2.8. Neural networks satisfy the information bottleneck optimality equation:

min
p(z|x):Y→X→Z

|I(Z;X) − βI(Z;Y )|, β > 0 (2.12)
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Where Y are the true labels, X is the observed data about Y , and Z is the learned

representation. The information bottleneck learns the representation Z subject to

the above constraint, where β controls the strength of the constraint. The standard

cross-entropy loss is recovered as β → ∞. We do not concern ourselves with the

existence of the compression phase addressed by Saxe [1] but instead observe that

the information bottleneck optimality equation holds irrespective of whether fitting

and compression happen in sequence or simultaneously. Additionally, the value of the

information bottleneck to this work is in its implication that a neural network seeks

to learn a representation, Z, which retains a maximal amount of information about

Y and a minmal amount of information about X. Further work by Alemi et al. [23]

suggests refinements on the information bottleneck theory that we do not discuss in

detail here.

The Minimum Necessary Information as defined by Fischer [16] consists of three

components for a learned representation:

1. Information We would like a representation Z that captures useful information

about a dataset (X, Y ).

2. Necessity The value of information to accomplish a task. In this case, predicting

Y given X using our representation Z. That is, I(X;Y ) ≤ I(Y ;Z)

3. Minimality Given all representations that can solve the task, we prefer the one

that retains the smallest amount of mutual information. That is, I(X;Y ) ≥

I(X;Z).

As mentioned in our discussion of Equation 2.4, the higher the mutual information

between this representation Z and our desired prediction Y , the better our predictions

will be.

Using Fischer’s definitions of necessity and minimality, we see that there is a point
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called the “MNI Point”:

I(X;Y ) = I(X;Z) = I(Y ;Z) (2.13)

This equation may not be satisfiable, since for any representation Z given a dataset

(X, Y ), there is a maximum value we are subject to:

1 ≥ D(X||Z) = sup
Z←X→Y

I(Y ;Z)
I(X;Z) (2.14)

Where D(X||Z) is the KL divergence given in Equation 2.5 and we achieve equality if

and only if the Markov chain X → Y is deterministic.

2.4 Information Geometry of Neural Networks

A neural network, as mentioned briefly in Section 1.1, is a form of connectionist

machine learning that is a universal approximator under minor assumptions about

the activation function [8]. In particular, a neural network connects many artificial

neurons each of which receive input x and emit an output that is a prediction of y.

From Equation 1.3, the forward pass of a single neuron gives us:

ŷ = σ

(
n∑

i=1
wixi + βi

)
= σ(wx+ β) (2.15)

Where σ is an activation function meeting the aforementioned assumptions, and β is

a bias vector.

Let S be the manifold of neural network outputs S = {σ(wx+β) : w ∈ Rn, β ∈ R}

parametrized by w and β. We picture the manifold S as an (n+1)-dimensional smooth

surface in the infinite-dimensional space of functions on Rn. Assume that our data is

generated by some function g such that y = g(x). Then if g ∈ S there exist w∗ ∈ Rn,

β∗ ∈ R such that we have an exact representation of g. In general, most target

functions are not in S and so we must train the values

(w∗, β∗) = arg min
w,b

dist(g,S) (2.16)
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which correspond to the coordinates of the orthogonal projection of g onto the surface

S. Thus, our optimal parameter ξ∗ = (w∗, β∗), if it exists, is given by:

ξ∗ = arg min
w,β

dist(p(x, z), p(x, y;w, β)) (2.17)

= arg min
ξ
D(p(x, z)||p(x, y; ξ)) (2.18)

where D is the KL divergence specified in Equation 2.5. The relationship between

the joint probability distribution and mutual information is specified in Equation 2.4.

Since we optimize ξ with respect to D(ŷ||y), as we approach the MNI point, the KL

divergence approaches zero.

Returning to our derivation in Theorem 2.2.1, we see that the optimal parameter

ξ∗ and the MNI point given by Equation 2.14 can be achieved for X ′ = ϕ(X), where

ϕ is a homeomorphism, since any projection onto S will still be on the manifold,

translated by the map ϕ. Thus, we conjecture that the ability of a network to learn

a representation that is predictive of y is invariant to homeomorphism on the input

data manifold. Returning to Equation 2.14, when Z is replaced by ŷ, we find that

as we approach the global minimum of the loss surface, we are minimizing D(ŷ||y),

which allows us to show:

minD(ŷ||y) = min sup
Ŷ←X→Y

I(Y ; Ŷ )
I(X; Ŷ )

(2.19)

= min sup
f(X,ξ)←X→Y

I(Y ; f(X, ξ))
I(X; f(X, ξ)) (2.20)

= min sup
fX(ξ)←X→Y

I(Y ; fX(ξ))
I(X; fX(ξ)) (2.21)

where fX(ξ) is the neural network with inputX and given parameters ξ. So our learning

process is minimizing the mutual information between Y and ξ, while maximizing the

mutual information between X and ξ. This inequality also holds for ξ′, the optimal

set of parameters for the input X ′. This theory is discussed in the context of our

experiments in Chapter 5.
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Chapter 3

Experiment 1 - Watkins Malware
Dataset

Neural networks have demonstrated some success in the security domain [27] and so

we have applied them to the Watkins [17] dataset. This dataset consists of interarrival

times for packets sent to Android devices, some of which were running malware.

Detecting malware via network traffic is an important problem, and this interpretation

of the problem is crucial for addressing the situation where a network owner cannot

install an antivirus agent on a device that may be infected with malware. This is a

common situation when personal devices are introduced to a corporate network; being

able to detect malicious software on a device without having an agent on the device

provides a tremendous benefit to network defenders.

3.1 Methodology

This experiment proceeds in three parts. The first considers our standard models:

fully-connected neural network, convolutional neural network, support vector machine,

and random forest. These models process our malware datasets in alignment with the

methods elaborated in Section 3.2. In experiment 1.a, the neural networks are trained

for a maximum of 30 epochs and we use the early stopping technique to prevent

overfitting. Early stopping will end training early when some condition is met - in our

16



case, we stop early if the network’s loss has not decreased by 0.001 or more for two

consecutive training epochs.

In experiment 1.b, we consider only the raw data across the standard models as

well as the Fourier neural network and wavelet neural network. The Fourier neural

network and wavelet neural network differ from a conventional convolutional neural

network by performing an in-layer transformation before the activation function is

applied, exploiting the convolution theorem. As in our previous experiment, in order

to ensure that deviations in the dataset did not induce significant variation in accuracy,

100 trials were run, and the accuracy and mean step time for all trials was averaged.

In experiment 1.c, the network is trained for 1000 epochs without early stopping,

and at each training epoch, the mutual information between the labels and the network,

I(Y ;M) and the mutual information between the data and the network, I(X;M) is

computed. This differs from the previous experiment as we do not concern ourselves

with accuracy but instead wish to see and plot the change in mutual information

during training. By running for 1000 epochs, we significantly overfit the training set,

making this a poor approach for optimizing accuracy. The details of this plot are

described below in Section 3.4.3

3.1.1 Mutual Information Computation

In each experiment, the following data are collected for each epoch:

1. The L2 norm of the weights

2. The mean of the gradients

3. The standard deviation of the gradients

4. The post-activation output of each layer for the test set.
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These data are then stored in a file. After training, the data is loaded from the files.

The entropy of the activity is computed by considering the KL-based upper bound on

the entropy using techniques from Section 4 of Kolchinsky and Tracey [28] to yield

the entropy of the layer H(M). This estimate is:

H(M) = −
∑

i

pi ln
∑

j

pj exp(−D(mi||mj)) (3.1)

where p is either the probability density of the dataset, X, or the probability of the

label Y , and m is the probability density estimate of our network layer, M . For

the entropy with respect to the labels, individual label probabilities are computed

and used with the entropy of the activity to compute the conditional entropy of the

activity given the label probabilities, giving us H(M |Y ). This is used in conjunction

with our computation of H(M) so that we can compute the mutual information

I(Y ;M) = H(M) −H(M |Y ).

These two mutual information values are then used to display information plane

data as plotted in Figure 3-2, Figure 4-1 and others. These calculations are identical

to the methods used in Saxe [1].

3.2 Data

We leveraged four different datasets: Raw, Fourier-transformed, Wavelet-transformed,

and a dataset consisting of summary statistics. The summary statistics of the first

three are captured in Table 3-I - we did not compute summary statistics for the

dataset of summary statistics. Our data consisted of 98 legitimate applications and

120 pieces of malware, which were collected by Yu and Li [29]. This gives us a dataset

that is approximately 55% malware and 45% benignware. While this distribution is

not reflective of real environments where malware is significantly rarer than benign

applications, we do not adjust for this disparity since our tolerance for alerting on

benign applications is much higher than our tolerance for not detecting malicious
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applications. For each application, five trials were conducted where the interarrival

time was collected for each of 100 ICMP ping packets, yielding a total dataset of 1090

trials. Further details of the data collection can be found in [17, 29]. One interesting

effect of performing the transforms on the dataset is that while the continuous wavelet

transform reduces our variance significantly and slightly normalizes the dataset, the

Fourier transform has the opposite effect, introducing tremendous amounts of noise

into the dataset.

3.2.1 Raw data

This is the data as described above, captured by Yu and Li in accordance with

Watkins [17]. In this dataset, only the raw measurements are used in a 100-dimensional

row vector, with a label of 0 for benign and 1 for malicious.

3.2.2 Fourier data

The Fourier data is a copy of the raw data under the Fourier transform. In particular,

since our raw data is given by a single 100-dimensional row vector, it is a direct

mapping of that row vector under the Fast Fourier Transform as provided by the

numpy library.

3.2.3 Wavelet data

The wavelet dataset is a copy of the raw data under a continuous wavelet transform.

The Morlet wavelet is used for the transform for several reasons: First, it is a wavelet

that allows us to maintain the dimensionality of our data, making it easier to compare

in performance and to re-use neural network architectures. Secondly, the Morlet

wavelet is closely related to human perception [30, 31], providing a small connection to

the human brain conception of neural networks. Lastly, the Morlet wavelet is uniquely

invertible, which is not the case for all potential mother wavelets.
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3.2.4 Summary data

The summary data leverages the seven features used by Yu and Li: arithmetic mean,

standard deviation, variance, maximum, minimum, geometric mean, and harmonic

mean. These features were fed to the classifier based on the sample they were captured

from as a 7-dimensional row vector.

Dataset Name Mean Median Mean Var. Median Var.
Raw 27.43 10.07 8329.96 7663.89
Fourier 58.60* -1.45 12229005.34 7418186.12
Wavelet 1.30 -.072 1887.5 1507.16

Table 3-I. Dataset Summary Statistics

The small but non-zero imaginary part in the Fourier data required implementation

of methods from Trabelsi et al. [32] to achieve acceptable results.

3.3 Models

In our experiments, we leveraged the following models:

• Fully Connected Neural Network

• Convolutional Neural Network

• Fourier Neural Network

• Wavelet Neural Network

• Random Forest

• Support Vector Classifier

The summary statistic dataset was not used with the convolutional neural network,

nor was it used with the Fourier or wavelet neural networks because there is no spatial
*There is an extremely small, but non-zero imaginary part, on the order of 10−19i
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relationship between the data and so convolution offers no benefit. Additionally, only

the raw data was processed by the Fourier and Wavelet neural networks. Though

these networks are capable of processing the transformed data, there is no obvious

benefit to transforming already-transformed data in-network.

All code1 was written in Python, using the Tensorflow 2, PyTorch, and Scikit-learn

libraries. Only the baseline models - the random forest and support vector machine -

described in 3.3.5 used the Scikit-learn library, and only the Wavelet Convolutional

network described in 3.3.4 used PyTorch. The remaining models all used the Tensorflow

framework. In the case of our non-standard neural networks, we consider the work

of Pratt [20] and Fujieda [22]. Both the Fourier and Wavelet neural networks take

advantage of the convolution theorem - that is, given two functions f and g,

(f ∗ g)(t) =
∫ ∞
−∞

f(τ)g(t− τ)dt

=
∫
Rn
f(x)e−2πixνdx ·

∫
Rn
g(x)e−2πixνdx

= F{f}(ν) · F{g}(ν)

and in the inverse, we get:

f · g = F−1{F{f} ∗ F{g}}

This allows us to avoid the high computational cost of performing a convolution

via the sliding-tile method and instead potentially take advantage of the convolution

theorem to perform convolution at the speed of the dot product. We further elaborate

on the architecture below.

For our neural networks, we use the Tensorflow standard stochastic gradient descent

optimizer, with a learning rate of 0.001. Results with other optimizers have been

promising, and Adam [33] has been the optimizer of choice for many deep learning

applications in the past few years, though we do not leverage it here. Hardware

specifications on which these experiments ran is in Appendix I.
1Code is available at the following url: https://github.com/erickgalinkin/jhu_masters
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3.3.1 Fully-Connected Neural Network

The fully-connected neural network architecture is a basic multi-layer perceptron

that accepts a 100-dimensional row vector. This vector is then fed to three densely

connected hidden layers, each with 256 ReLU-activated neurons. The fourth and

final output neuron is a single sigmoid-activated layer, which provides a probability of

maliciousness.

3.3.2 Standard Convolutional Neural Network

Our convolutional neural network is a sequential model that accepts a 100-dimensional

row vector as input. This input is processed by two convolutional layers, both with

256 neurons. The first has a kernel size of 5 and a stride size of 1, and the second

has a kernel size of 3 with a stride of size 1. The output of the second convolutional

layer is processed by two densely connected layers of 128 neurons each. The final layer

consists of a sigmoid-activated output layer, the same as the fully-connected neural

network.

3.3.3 Fourier Convolutional Neural Network

Our Fourier “Convolutional” neural network is identical architecturally to our standard

convolutional neural network, only with the convolutional layers replaced by Fourier

layers. Here, we put the word convolutional in quotes due to the fact that no actual

convolution is performed. To be more intellectually honest, we should refer to this

network instead as a “Fourier Transform Cross Product Network”, though this may

confuse readers unfamiliar with the relationship. In the interest of broad understanding,

the term convolutional neural network is used when it helps clarify meaning even in

spite of being a slight misnomer.

Specifically, the Fourier Convolutional Neural Network leverages a custom Fourier

layer that moves the data into Fourier space via the Fast Fourier Transform and then
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multiplies the transpose of the weight matrix with the input to the matrix. Specifically,

given an input X(n) where the superscript is not an exponent, but instead indicates

the layer of the input, the Fourier layer ℓ acts on X to give an input to our next layer:

X(n+1) = ℓ(n)(X(n)) = σ(F−1(F(X(n)) · W(n)⊤)) (3.2)

Where F is the Fast Fourier Transform, σ is the activation function - ReLU in this

case - and W is the weight matrix for layer n.

3.3.4 Wavelet Convolutional Neural Network

The Wavelet Convolutional Neural Network implements similar functionality to our

Fourier Neural Network, using the Discrete Wavelet Transform in lieu of the Fourier

transform. Due to the fact that there is a time component and a frequency component,

the wavelet neural network has a different in-layer dimensionality than our other

models but is otherwise identical.

In our Wavelet Convolutional Neural Network, we take a 100-dimensional row

vector as input. This input is then sent to the “wavelet layer” where it undergoes a

Daubechies discrete wavelet transform. There are a very large number of wavelets

which can be used in the discrete wavelet transform [30], but the Daubechies wavelet

is easy to put into practice and has a unique inverse everywhere, so we use it here.

The output is cast to a tensor that is multiplied against the transpose of the weight

tensor. This output then undergoes an inverse discrete wavelet transform with respect

to the same mother wavelet.

3.3.5 Baseline Models

Two baseline models were considered on these datasets. The first is the random forest

model provided in the Scikit-learn library with no hyperparameter tuning. Decision

tree models are generally good at classification tasks [12] but are weak classifiers that
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are sensitive to variance. Random forests are the result of averaging a large collection

of de-correlated trees and provide a good benchmark as a naïve model - in the respect

that it is untuned - for classification. Random forests are also performant in the

respect that they train and evaluate examples quickly, relative to neural networks.

This makes them common for use in industry.

The other benchmark model is a Support Vector Classifier, again provided by

the Scikit-learn library. The rationale for using a Support Vector Machine is that

we wanted to see if some hyperplane could be learned that would separate the data.

This model was again, naïve in the respect that it was merely the “out of the box”

model, and so the classifier was built on top of the radial basis function kernel.

Details of the Support Vector Classifier can be found in James [6] or the Scikit-learn

documentation [18].

3.4 Results

We split the results here into three subsections for clarity, first presenting and discussing

the malware data transformations with respect to the algorithms they were tested

on. We then turn to the ways that all six architectures performed on the raw data.

Finally, we discuss the information plane of our neural networks.

3.4.1 Malware Dataset Transformation

Our results for the transformed datasets, contained in Table 3-II show our test accuracy

and the mean time per batch for each neural network. The time per batch is not

available for the baseline models.

In terms of accuracy, we find that the random forest on the raw data performs best,

followed closely by the random forest on the wavelet-transformed data, and third the

random forest trained on the Fourier-transformed data. On all datasets, the random
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Data and Architecture Combination Test Accuracy Mean Step Time (µs)
Raw, Fully-Connected NN 63.40% 13
Summary, Fully-Connected NN 55.14% 13
Fourier, Fully-Connected NN 59.88% 12
Wavelet, Fully-Connected NN 61.95% 12
Raw, Convolutional NN 72.89% 54
Fourier, Convolutional NN 70.81% 56
Wavelet, Convolutional NN 70.77% 52
Raw, Random Forest 80.28% N/A
Summary, Random Forest 76.91% N/A
Fourier, Random Forest 79.63% N/A
Wavelet, Random Forest 79.80% N/A
Raw, Support Vector Classifier 65.77% N/A
Summary, Support Vector Classifier 55.28% N/A
Fourier, Support Vector Classifier 55.28% N/A
Wavelet, Support Vector Classifier 55.28% N/A

Table 3-II. Classifier accuracy on transformed datasets

forest classifier outperforms all other classifiers on that same dataset. Notably, when

we compare accuracy by model, we find that for the fully-connected neural network,

our maximum average accuracy is 63.40%, while our minimum average accuracy is

given by the summary statistics. Excluding the summary statistic data, the difference

between the highest average accuracy and lowest average accuracy for fully-connected

neural networks is 3.52%, a very small margin. Comparatively, for the convolutional

neural network, our delta is 2.12%, again - quite small. Similarly, the random forest

performs near the 80% mark universally, irrespective of representation, and performs

worst on the summary statistic dataset.

3.4.2 In-network Data Transformation

For our in-network data transformations, we consider only the raw dataset. The test

accuracy and mean time per batch for both the Fourier and Wavelet neural network

are contained in Table 3-III along with the results for the other four architectures on

which the raw data was tested.
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Architecture Test Accuracy Mean Step Time (µs)
Fully-Connected NN 63.40% 13
Convolutional NN 72.89% 54
Fourier NN 63.27% 143
Wavelet NN 74.85% 228
Random Forest 80.28% N/A
Support Vector Classifier 65.77% N/A

Table 3-III. All classifier accuracy on raw dataset only

It is worth noting that one of the primary motivations for replacing the sliding-

tile convolution method with a Fourier or Wavelet method is the performance gains

identified by others [20]. However, as we show, the Fourier and Wavelet networks are

significantly slower than their untransformed counterparts on this dataset. We con-

clude that the computational overhead of performing a transform and its corresponding

inverse transform outweighs the speed-up gained by eliminating the sliding-tile convo-

lution on smaller datasets, and the method as demonstrated in Pratt [20] should be

reserved for relatively large images, where convolution is already slow. In our case,

we see a 2.65x increase in step time between a standard convolution and the Fourier

method. Unfortunately, our activation functions do not behave nicely in the Fourier or

Wavelet domain, as these functions operate linearly with respect to the space and so an

inverse transform must be applied. The question of using a novel convolution operator

and conducting the activation in that space has been addressed by Chakraborty [34]

but goes well beyond the question of simply adapting an activation function to the

Fourier or Wavelet space. The search for a spectral activation function remains an

open question.

3.4.3 Malware Dataset Information Plane Analysis

Figure 3-1 displays a zoomed-in view of the information plane for our malware dataset

and neural network. On the x axis is the mutual information I(X;M), computed

as described in Section 3.1.1. On the y axis is the mutual information I(Y ;M).
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Optimally, we want to see high values on the y axis and lower values on the x axis for

each layer - this would suggest that the learned representation in the neural network,

M , requires relatively little data about X to reliably predict Y . In this figure, each

layer is plotted independently.

Figure 3-1. Large plot for Fully-Connected Neural Network Information Plane on Raw
Data. Produced using the upper bound and binning methodology from Saxe [1] over 1000
epochs.

The cluster of data points on the lower-left hand side represent the output layer,

which gains slightly better predictive ability about the data throughout the 1000 epochs.

The shift toward the right in later epochs is suggestive of overfitting the dataset, and
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M containing more information about X. Meanwhile, the shift upward, particularly

early on, indicates the network improving the amount of mutual information between

M and Y . We define the information plane as in Tishby [15]: the plane of the mutual

information values that each layer preserves on the input and output. In the upper

right of the plot, we see what appears to be a single point - this is all three hidden

layers of the neural network, which do not see any change in mutual information. We

verified during training that the weights were changing as expected in all hidden layers,

and the network loss went down throughout training; only the mutual information did

not change. The low level of mutual information may be due to the weak correlation

relationship between X and Y , which has a bivariate correlation of 0.2629 for the raw

data.

We can see in Figure 3-2, subplots A, B, and C, that the amount of information

changes very little. There is a high level of mutual information about Y and X

captured in the hidden layers, while the output layer has almost no information about

Y and only learns less than 2 bits of information about X. Given how similar the

accuracies for the fully-connected neural network were - as can be seen in Table 3-II

and how similar subplots A, B, and C are in Figure 3-2, it’s clear that the learned

representations capture the same amount of information about the target labels. With

respect to our summary dataset information plane in subplot D, we note that the

graph looks more like a scatter plot than a line chart, seemingly because of the nature

of the transformation - that is, the entire representation of the data is changed.

As we note in our discussion of minimum necessary information in Equation 2.14,

we achieve optimality only when X uniquely determines Y , which does not appear

to be the case for our dataset. It is worth noting that all of the information planes

in Figure 3-2 aside from the summary data in subplot D do not change their mutual

information for the hidden layers and converge to the same mutual information for

the output layer - the only layer which sees a change in mutual information. It was
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Figure 3-2. Fully-Connected Neural Network Information Plane for four malware data
sets

experimentally verified that although the weights and entropies of each individual

layer did change throughout training, the mutual information for the hidden layers

remained stationary across 1000 epochs on the non-summary datasets.

The similarity of the plots in Figure 3-2, Figure 3-3, and Figure 3-4 is not a

coincidence, and the captured mutual information about the labels in the output layer

is within a fraction of a bit for all of our networks. An unexpected deviation can be

observed in Figure 3-3 subplot C, the information plane for the convolutional neural

network trained on the wavelet data. This effect happens in the convolutional layers,

and only on the wavelet-transformed data. The cause of this change is unknown,
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Figure 3-3. Information Plane for Convolutional neural network for three data sets

and is reserved for future work. Despite this difference, the dense hidden layers and

the output layer converge to the same points in the information plane as the other

networks and datasets.

In Figure 3-4, we observe that the process of putting our data through the Fourier

transform or Wavelet transform and the corresponding inverse transform, seems to

preserve both mutual information and our accuracy. Both subplots A and B mimic

the information plane of the fully-connected neural networks and have nearly the same

information plane graph as the convolutional neural network as seen in Figure 3-3,

Subplots A and B.
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Figure 3-4. Information Plane for Fourier and Wavelet neural networks for raw data

Some of the difference between the initial mutual information states for network

and dataset combinations can be explained by the stochasticity in neural networks -

that is, the weights of the network are initialized randomly, and samples are chosen at

random. As a result, it is crucial to look at how the networks converge, and after 1000

epochs, the key factor between networks appears to be architecture - that is, whether

the network is feedforward or convolutional - rather than the representation of the

data itself. Due to the remarkable similarity of the information plane, we conclude

that the representations learned by the neural network are related more to latent

structure in the data than to the specific values of the input data.

Further, for all of our neural networks, our information plane is quite similar, and

converges to exactly the same value for mutual information in the densely connected

hidden layers. The exception is the summary dataset, which is the only dataset whose

representation is not the result of a homeomorphic transformation. We also note that

this is the dataset with the worst evaluation accuracy.
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Chapter 4

Experiment 2 - Dataset and
in-Network Transformation of
MNIST

4.1 Motivation

In order to contextualize the results of the experiments conducted on malware data, we

consider the methods presented on the well-studied MNIST Database of Handwritten

Digits [35]. MNIST is a benchmark in computer vision - since our baseline convolutional

neural network is based on LeNet [10], we have a large body of research to compare

to. Additionally, MNIST serves as an introduction to the field of computer vision for

many students and so our architectures and theories can be made more accessible in

that context. The current state of the art for MNIST achieved a 99.84 accuracy this

year [36]. The best results achieved in the original LeCun paper were 99.3% accuracy;

generally, accuracy greater than 97% is considered to be good.

4.2 Methodology

In order to maintain consistency with our other findings, our methodology is the same

as experiments in Chapter 3. We leverage the hardware described in Appendix I and

perform two sub-experiments. The goal of the first part of our experiment is to best
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fit the data while ensuring generalization, and our goal is to optimize accuracy on the

test set. The results of this experiment are contained in Table 4-I. In the second part

of our experiment, we ran the same mutual information computation as described in

Section 3.1.1, and those results are displayed in Figure 4-1 and Figure 4-2.

4.3 Results

In this experiment, all of our models achieve accuracy over 97% which is broadly consid-

ered to be the benchmark accuracy for “passing” MNIST. For all these combinations of

architecture and transformation, the difference between our maximum accuracy score

of 99.11% and our minimum accuracy of 97.73% is only 1.38%. Comparing the convo-

lutional models in particular, the difference between the Raw, Fourier-transformed,

and Wavelet-transformed data is only 0.01%.

Data and Architecture Test Accuracy Mean Step Time (µs)
Raw, Fully-Connected NN 97.73% 29
Fourier, Fully-Connected NN 98.12% 41
Wavelet, Fully-Connected NN 97.83% 30
Raw, Convolutional NN 99.11% 204
Fourier, Convolutional NN 99.10% 237
Wavelet, Convolutional NN 99.10% 212
Raw, Fourier NN 98.45% 959
Raw, Wavelet NN 98.89% 1068

Table 4-I. Neural Network Results

Figure 4-1 was produced using the upper bound methodology from Saxe [1]. We

see from all three subplots in Figure 4-1 that over 1000 training epochs, the mutual

information about the labels for the first and last layers of the neural net is quite

similar for our fully-connected neural networks irrespective of the initial data. We note

that in Subplot C, the wavelet data yields a much lower amount of information about

Y in the first training epoch, but quickly converges to the same point as the other

two datasets, represented in subplots A and B. As seen in both Shwartz-Ziv [25] and
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Figure 4-1. Fully-Connected Neural Network Information Plane

Saxe [1], the early training epochs cause the largest increase in mutual information

with respect to the labels, decreasing over training. We also observe a slight decrease

in the amount of mutual information with respect to the data in later training epochs

- which is expected as the learned representation becomes better able to map data

to labels. The fully connected network converges to an upper bound for the output

layer which is within half a bit across all three datasets - raw, Fourier-transformed,

and Wavelet-transformed - within the first 500 epochs and begin to reduce their

mutual information about X as the network overfits the dataset. Since we use ReLU

activation functions, we do not see a “fitting phase and compression phase” as observed

in Tishby [15], but instead a simultaneous “fitting and compression” as in Saxe.
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Figure 4-2. Convolutional Neural Network Information Plane

We observe very similar results in Figure 4-2 with the convolutional network, and

we can see that the convolutional layers, which for all 3 data representations, sits near

the point (10, 2.6) throughout training, do not budge from that point. Meanwhile,

the densely connected layers sit at the same point in the information plane as in

Figure 4-1. We can also see that the output layer on the left moves to nearly the same

point for all 3 models.
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Chapter 5

Conclusions and Further Work

5.1 What a Neural Network Learns

In Section 2.3, we show that that the representation learned by the neural network, Z

must constitute a minimum sufficient statistic of X in order for the network to be

predictive with respect to the information bottleneck optimality equation. Moreover,

we demonstrate that the mutual information satisfies the data processing inequality

with respect to the Markov chain Y → X → Z: I(Y ;X) ≥ I(Y ;Z). Since the

invariance of mutual information under homeomorphism allows us to affirm that any

smooth, uniquely invertible map on X does not impact the ability of a network to learn

a representation, we have demonstrated that only methods of feature extraction [8]

which change the data in ways that meaningfully change the entropy of X are useful

for altering the prediction accuracy of the network. We know from natural language

processing that some types of feature extraction which are not invertible improve

the accuracy of prediction [8], but given the results of our summary statistic data

in Section 3.4, not all feature extraction methods are equally valid. This also makes

intuitive sense from the standpoint of the data processing inequality outlined in

Section 2.3, Equation 2.8. This strengthens the theory [37] that probability mass

is concentrated in locally-connected regions approximated by small manifolds with

significantly lower dimensionality than X itself, since these submanifolds would be
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preserved under this transformation.

Based on the results of our experiments in Chapter 3 and Chapter 4, we observe

that transformation of the dataset under homeomorphism has very little impact on

the information plane. Since the information plane is largely unchanged, and our

accuracy remains quite similar, we conjecture that a smooth, bijective map applied to

a dataset does not impact the ability of a neural network to learn a representation. A

rigorous proof of this conjecture is reserved for future work.

We used the convolution theorem to process smaller datasets than in Pratt [20]

and Fujieda [22] and found no loss of mutual information or accuracy. However, we do

not observe the speed increases in the previous work, possibly due to the disparity in

our data size - the overhead of the transform and the inverse transform is larger than

the improved speed of dot product over convolution. This suggests that leveraging

the convolution theorem to reduce computational load on large datasets may be

worthwhile since we improve the speed of computation with no loss of information

but is inefficient on smaller datasets.

5.2 Malware Data Experiments

In our malware data experiments, no neural network was able to match or surpass the

accuracy of the random forest. Additionally, the random forest is a model that is more

interpretable, and trains much more quickly - two features that are highly desirable in

information security. No optimization was done on the hyperparameters of the decision

tree, and so it is likely that a decision tree trained on raw data could achieve even

higher accuracy results than were achieved in Chapter 3. Since each observation in

our data is independent of the observation before it, the relationships are not complex

and so it is plausible that a decision tree-based model could be architecturally optimal

for our problem.
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Our summary statistic dataset provided the most data interpretability from a hu-

man standpoint, and per model, provided the worst results. This result demonstrates

that human interpretability of the data does not necessarily enhance the ability of

neural networks to learn, even in relatively low dimensional spaces. Some opportunity

exists to enhance neural network-based detection, but this would likely require sig-

nificantly larger volumes of data and more homogeneity between samples. Further

work could also be done to do manual feature extraction or additional correlation of

metadata to improve detection rates.

5.3 Further Work

Our experiments contextualize results from experiments on the EMBER dataset

performed by Anderson, Raff, and previous work done by the author of this pa-

per [27, 38, 39]. Anderson found that features extracted by experts with some light

preprocessing outperformed featureless end-to-end deep learning even in spite of the

“natural” feature extraction found in convolutional neural networks [40]. Our previous

work found that raw bytes are generally not a robust feature for malware detection,

even if the support of the convolutional filter is considered and the filter shape is

optimized for the target. Our results here suggest that there may be some relevant

change to the entropy when the executable is parsed as in Anderson’s work. This

research serves as an avenue for future work.

There are implications of taking a manifold view in the space of adversarial

examples [41] that could allow us to minimize the dimension of the manifold and the

order of the coordinate system, smoothing the loss surface, reducing the efficacy of

gradient-based attacks [42]. This application has valuable contributions to the defense

of machine learning systems, a threat that organizations are not prepared for [43].

By using the ideas of a projection onto a manifold, we can categorize networks and

datasets that might prove susceptible to adversarial examples. Additionally, since
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we seek to minimize the information in our learned representation, model inversion

attacks [44] become more challenging.

Our neural network’s poor accuracy and the success of the random forest classifier

also provide a potential avenue for further study. If our random forest classifier learns

rules that partition the dataset, rather than a function that maps inputs to labels, it

may be architecturally optimal. This would require a multi-dimensional analysis of

the data and examining in-depth the branching points of the random forest classifier.

Though this work is outside the scope of this thesis, it would provide an insight into

when and why to choose certain machine learning models given properties of the

dataset.

Finally, when plotting the information plane, the parameter that seemed to have

the greatest effect on the magnitude of the changes was the number of neurons,

especially in the case of a feed-forward neural network. We observed that using very

small numbers of neurons by modern neural network sizes: 4 to 16 neurons per layer,

for example, we saw much lower initial levels of mutual information, which would still

eventually converge to the same points. We did not explore why this is the case, and

reserve investigation of this phenomenon to future work.
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Appendix I

Hardware

All models were trained on the same hardware with the following specifications:
CPU: AMD Ryzen Threadripper 2920x 12-core 3.5 GHz
RAM: 128 GB 3200 MHz DDR4
GPU: Nvidia RTX 2080 Ti 12GB

All models for which the software was compatible with GPU were trained on GPU. Datasets
were all small enough to be held in memory after having been read from disk so disk i/o latency was
not a factor in training times.
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